Surface Modification of Bi2Te3 Nanoplates Deposited with Tin, Palladium, and Tin/Palladium Using Electroless Deposition

Author:

Kohashi Kaito1,Okano Yutaro1,Tanisawa Daiki1,Kaneko Keisuke1,Miyake Shugo2,Takashiri Masayuki1ORCID

Affiliation:

1. Department of Materials Science, Tokai University, 4-1-1, Kitakaname, Hiratsuka 259-1292, Japan

2. Department of Mechanical Engineering, Kobe City College of Technology, 8-3, Gakuen-Higashimachi, Nishi-ku, Kobe 651-2194, Japan

Abstract

Surface-modified nanoplate-shaped thermoelectric materials can achieve good thermoelectric performance. Herein, single-crystalline Bi2Te3 nanoplates with regular hexagonal shapes were prepared via solvothermal techniques. Surface modification was performed to deposit different metals onto the nanoplates using electroless deposition. Nanoparticle-shaped tin (Sn) and layer-shaped palladium (Pd) formed on the Bi2Te3 nanoplates via electroless deposition. For the sequential deposition of Sn and Pd, the surface morphology was mostly the same as that of the Sn-Bi2Te3 nanoplates. To assess the thermoelectric properties of the nanoplates as closely as possible, they were compressed into thin bulk shapes at 300 K. The Sn-Bi2Te3 and Sn/Pd-Bi2Te3 nanoplates exhibited the lowest lattice thermal conductivity of 1.1 W/(m·K), indicating that nanoparticle-shaped Sn facilitated the scattering of phonons. By contrast, the Pd-Bi2Te3 nanoplates exhibited the highest electrical conductivity. Thus, the highest power factor (15 μW/(m∙K2)) and dimensionless ZT (32 × 10−3) were obtained for the Pd-Bi2Te3 nanoplates. These thermoelectric properties were not as high as those of the sintered Bi2Te3 samples; however, this study revealed the effect of different metal depositions on Bi2Te3 nanoplates for improving thermoelectric performance. These findings offer venues for improving thermoelectric performance by sintering nanoplates deposited with appropriate metals.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3