Novel Salts of Heterocyclic Polyamines and 5-Sulfosalicylic Acid: Synthesis, Crystal Structure, and Hierarchical Supramolecular Interactions

Author:

Bojarska Joanna1ORCID,Łyczko Krzysztof2ORCID,Mieczkowski Adam3ORCID

Affiliation:

1. Institute of Faculty of Chemistry, Institute of General & Inorganic Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland

2. Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland

3. Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland

Abstract

A series of novel salts of heterocyclic polyamines with 5-sulfosalicylic acid (C4H7N4+)(C7H5O6S−)∙2(H2O) (1), (C4H6ClN4+)(C7H5O6S−)∙H2O (2), (C5H8N3+)(C7H5O6S−)∙H2O (3), (C5H7N6+)(C7H5O6S−)∙H2O (4), (C6H14N22+)(C7H4O6S2−)∙H2O (5), and (C14H19N2+)(C7H5O6S−) (6) have been successfully synthesized. Their crystal structures have been determined by single-crystal X-ray diffraction. Overall, compounds adopt a layered structure with aminium cations and 5-sulfosalicylic anions linked via water molecules. The solid-state architectures of these compounds are dominated by O(N,H)-H⋯O and N-H⋯N hydrogen bonds and stabilized by weak interconnects. C-Cl⋯π and S-O⋯π interactions, apart from π⋯π and C-H(O)⋯π, were reported. Diverse approaches were used to study the effect of substituents in the polyamines in solid-state arrangement. A Hirshfeld surface analysis, with associated 3D Hirshfeld surface maps and 2D fingerprint plots, molecular electrostatic potential, and energy frameworks were used to comprehensively investigate the nature and hierarchy of non-covalent interactions and inspect supramolecular differences. The contact enrichment ratio calculations provided deeper insight into the propensity of interconnects to influence crystal packing. The evaluation of the effects of H-bonding synthons resulting from different substituents in the polyamines on self-assemblies is also presented. In the context of crystal engineering, a specific intramolecular synthon via O-H⋯O observed in nearly all crystals can be employed in the pseudo-cyclic replacement strategy in the design of new molecules.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3