Understanding the Mechanistic Pathways of N2 Reduction to Ammonia on (110) Facets of Transition Metal Carbides

Author:

Iqbal Atef1ORCID,Skúlason Egill2,Abghoui Younes1

Affiliation:

1. Science Institute, Faculty of Physical Sciences, University of Iceland, Sæmundargata 2, 102 Reykjavík, Iceland

2. Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, Sæmundargata 2, 102 Reykjavík, Iceland

Abstract

The conversion of molecular dinitrogen into ammonia under mild conditions is a significant pursuit in chemistry due to its potential for sustainable and clean ammonia production. The electrochemical reduction of N2 offers a promising route for achieving this goal with reduced energy consumption, utilizing renewable energy sources. However, the exploration of effective electrocatalysts for this process, particularly at room temperature and atmospheric pressure, remains under exploration. This study addresses this gap by conducting a comprehensive investigation of potential catalysts for nitrogen electro-reduction to ammonia under ambient conditions. Using density functional theory calculations, we explore the (110) facets of rock salt structures across 11 transition metal carbides. Catalytic activity is evaluated through the construction of free energy diagrams for associative, dissociative, and Mars–van Krevelen reaction mechanisms. Additionally, we assess material stability against electrochemical poisoning and decomposition of parent metals during operation. Our findings suggest that a few of the candidates are promising for nitrogen reduction reactions, such as TaC and WC, with moderate onset potentials (−0.66 V and −0.82 V vs. RHE) under ambient conditions.

Funder

Icelandic Research Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3