Effects of Rare-Earth Elements Doping on Micro-Structure and Fluorescence Performances of Fluorapatite

Author:

Bie Shao-Rong1,She Ding-Shun12,Yue Wen123

Affiliation:

1. School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China

2. Zhengzhou Institute, China University of Geosciences (Beijing), Zhengzhou 451283, China

3. Technology Innovation Center for Major Engineering Geological Safety Risk Prevention and Control, Ministry of Natural Resources, Beijing 100083, China

Abstract

For purposes of optimizing the microstructure and fluorescence properties of rare-earth elements (REEs)-doped fluorapatites (FAps), various kinds of REEs (La, Pr, Sm, Eu, Gd, Ho, Er, and Yb) with the concentration of 2~20 mol.% have been inserted into the FAps framework via hydrothermal method, in order to investigate the influential mechanism of the REEs on the crystal structure, morphology, and fluorescence under the excitation of the near-ultraviolet light of the FAps. Experimental results show that the wavelength of the emitted light of the REEs-doped FAps is decided by the type of REEs. Unlike the Pr/Yb- and Ho-doped FAps and with the fluorescence of red and green emitted light, respectively, the Er-doped FAps show a blue light emission with wavelengths of 296, 401, and 505 nm, which is, moreover, different with the Eu-doped Faps, showing an orange light emission with wavelengths of 490, 594, and 697 nm. The emission luminous color is related to the lattice defects of the FAps doped with the various types and the effective doping concentration of the REEs. The luminous intensity increases with the increase in the effective doping concentration of the REEs. Nevertheless, the formation of rare-earth fluoride results in the decrease in the effective doping concentration of the REEs and the luminous intensity. The FAps with an effective doping concentration of 7 mol.% Er and 3 mol.% Eu show relative excellent fluorescence properties.

Funder

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Henan Province

National Key Research and Development Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3