Retrieval of High-Resolution Soil Moisture through Combination of Sentinel-1 and Sentinel-2 Data

Author:

Ma Chunfeng,Li Xin,McCabe Matthew F.ORCID

Abstract

Estimating soil moisture based on synthetic aperture radar (SAR) data remains challenging due to the influences of vegetation and surface roughness. Here we present an algorithm that simultaneously retrieves soil moisture, surface roughness and vegetation water content by jointly using high-resolution Sentinel-1 SAR and Sentinel-2 multispectral imagery, with an application directed towards the provision of information at the precision agricultural scale. Sentinel-2-derived vegetation water indices are investigated and used to quantify the backscatter resulting from the vegetation canopy. The proposed algorithm then inverts the water cloud model to simultaneously estimate soil moisture and surface roughness by minimizing a cost function constructed by model simulations and SAR observations. To examine the performance of VV- and VH-polarized backscatters on soil moisture retrievals, three retrieval schemes are explored: a single channel algorithm using VV (SCA-VV) and VH (SCA-VH) polarizations and a dual channel algorithm using both VV and VH polarizations (DCA-VVVH). An evaluation of the approach using a combination of a cosmic-ray soil moisture observing system (COSMOS) and Soil Climate Analysis Network measurements over Nebraska shows that the SCA-VV scheme yields good agreement at both the COSMOS footprint and single-site scales. The features of the algorithms that have the most impact on the retrieval accuracy include the vegetation water content estimation scheme, parameters of the water cloud model and the specification of initial ranges of soil moisture and roughness, all of which are comprehensively analyzed and discussed. Through careful consideration and selection of these factors, we demonstrate that the proposed SCA-VV approach can provide reasonable soil moisture retrievals, with RMSE ranging from 0.039 to 0.078 m3/m3 and R2 ranging from 0.472 to 0.665, highlighting the utility of SAR for application at the precision agricultural scale.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3