Structure from Motion of Multi-Angle RPAS Imagery Complements Larger-Scale Airborne Lidar Data for Cost-Effective Snow Monitoring in Mountain Forests

Author:

Broxton Patrick D.,van Leeuwen Willem J. D.ORCID

Abstract

Snowmelt from mountain forests is critically important for water resources and hydropower generation. More than 75% of surface water supply originates as snowmelt in mountainous regions, such as the western U.S. Remote sensing has the potential to measure snowpack in these areas accurately. In this research, we combine light detection and ranging (lidar) from crewed aircraft (currently, the most reliable way of measuring snow depth in mountain forests) and structure from motion (SfM) remotely piloted aircraft systems (RPAS) for cost-effective multi-temporal monitoring of snowpack in mountain forests. In sparsely forested areas, both technologies give similar snow depth maps, with a comparable agreement with ground-based snow depth observations (RMSE ~10 cm). In densely forested areas, airborne lidar is better able to represent snow depth than RPAS-SfM (RMSE ~10 cm vs ~10–20 cm). In addition, we find the relationship between RPAS-SfM and previous lidar snow depth data can be used to estimate snow depth conditions outside of relatively small RPAS-SfM monitoring plots, with RMSE’s between these observed and estimated snow depths on the order of 10–15 cm for the larger lidar coverages. This suggests that when a single airborne lidar snow survey exists, RPAS-SfM may provide useful multi-temporal snow monitoring that can estimate basin-scale snowpack, at a much lower cost than multiple airborne lidar surveys. Doing so requires a pre-existing mid-winter or peak-snowpack airborne lidar snow survey, and subsequent well-designed paired SfM and field snow surveys that accurately capture substantial snow depth variability.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3