Harmonic Resonance Mechanisms and Influencing Factors of Distributed Energy Grid-Connected Systems

Author:

Xu Minrui1,Li Zhixin1,Lu Shufeng1,Xu Tianyang2,Zhang Zhanqi2,Quan Xiangjun2

Affiliation:

1. New Electrical Metrology Technology Laboratory of State Grid Corporation of China (Marketing Service Center of State Grid Jiangsu Electric Power Co., Ltd.), Nanjing 210019, China

2. School of Electrical Engineering, Southeast University, Nanjing 210096, China

Abstract

With the rapid development of global energy transformation and new power system, ensuring the stability of distributed energy grid connections is the key to maintaining the reliable operation of the whole power system. This paper constructs detailed impedance models of grid-following (GFL) and grid-forming (GFM) inverters using a harmonic linearization method and thoroughly investigates the mechanisms of resonance when inverters are connected to the grid, as well as the impact of model parameters on the stability of the grid system. This paper also briefly analyzes the scenario where distributed energy and electric vehicles are integrated into the grid simultaneously, demonstrating that grid system stability can be ensured in complex grid situations through reasonable parameter design. Lastly, the accuracy of the proposed impedance models and analysis is verified through MATLAB/Simulink simulations.

Funder

State Grid Jiangsu Electric Power Company Technology Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3