Affiliation:
1. College of Intelligent Science and Control Engineering, Jinling Institute of Technology, Nanjing 211169, China
Abstract
Electric vehicles can reduce the dependence on limited resources such as oil, which is conducive to the development of clean energy. An accurate battery state of health (SOH) is beneficial for the safety of electric vehicles. A multi-feature and Convolutional Neural Network–Bidirectional Long Short-Term Memory–Multi-head Attention (CNN-BiLSTM-MHA)-based lithium-ion battery SOH estimation method is proposed in this paper. First, the voltage, energy, and temperature data of the battery in the constant current charging phase are measured. Then, based on the voltage and energy data, the incremental energy analysis (IEA) is performed to calculate the incremental energy (IE) curve. The IE curve features including IE, peak value, average value, and standard deviation are extracted and combined with the thermal features of the battery to form a complete multi-feature sequence. A CNN-BiLSTM-MHA model is set up to map the features to the battery SOH. Experiments were conducted using batteries with different charging currents, and the results showed that even if the nonlinearity of battery SOH degradation is significant, this method can still achieve a fast and accurate estimation of the battery SOH. The Mean Absolute Error (MAE) is 0.1982%, 0.1873%, 0.1652%, and 0.1968%, and the Root-Mean-Square Error (RMSE) is 0.2921%, 0.2997%, 0.2130%, and 0.2625%, respectively. The average Coefficient of Determination (R2) is above 96%. Compared to the BiLSTM model, the training time is reduced by an average of about 36%.
Funder
Major Project of Basic Science (Natural Science) Research in Colleges and Universities of Jiangsu Province
“Qinglan Project” for universities in Jiangsu Province
Scientific Research Foundation for High-level Personnel in Jinling Institute of Technology