CCBA-NMS-YD: A Vehicle Pedestrian Detection and Tracking Method Based on Improved YOLOv7 and DeepSort

Author:

Yuan Zhenhao1,Wang Zhiwen2ORCID,Zhang Ruonan1

Affiliation:

1. School of Computer Science and Technology, Guangxi University of Science and Technology, Liuzhou 545026, China

2. School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545026, China

Abstract

In this paper, we propose a vehicle pedestrian detection and tracking method based on the improved YOLOv7 and DeepSort algorithms. We aim to improve the quality of vehicle pedestrian detection and tracking, addressing the challenges that current commercially available autonomous driving technologies face in complex and changing road traffic situations. First, the NMS (non-maximum suppression) algorithm in YOLOv7 is replaced with a modified Soft-NMS algorithm to ensure that targets can be accurately detected at high densities, and second, the CCBA (coordinate channel attention module) attention mechanism is incorporated to improve the feature extraction and perception capabilities of the network. Finally, a multi-scale feature network is introduced to extract features of small targets more accurately. Finally, the MobileNetV3 lightweight module is introduced into the feature extraction network of DeepSort, which not only reduces the number of model parameters and network complexity, but also improves the tracking performance of the target. The experimental results show that the improved YOLOv7 algorithm improves the average detection accuracy by 3.77% compared to that of the original algorithm; on the MOT20 dataset, the refined DeepSort model achieves a 1.6% increase in MOTA and a 1.9% improvement in MOTP; in addition, the model volume is one-eighth of the original algorithm. In summary, our model is able to achieve the desired real-time and accuracy, which is more suitable for autonomous driving.

Funder

National Natural Science Foundation of China

Key Project of Guangxi Natural Science Foundation

Guangxi Key Laboratory of Big Data in Finance

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3