Role of Bubble Evolution in the Bubble-Propelled Janus Micromotors

Author:

Chen Gang1,Wang Xuekui1,Zhang Bingyang1,Zhang Fangfang1,Wang Zhibin2ORCID,Zhang Baiqiang1,Li Guopei1

Affiliation:

1. School of Energy and Power Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China

2. School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, China

Abstract

Bubble-propelled Janus micromotors have attracted extensive attention in recent years and have been regarded as powerful tools in the environmental and medical fields due to their excellent movement ability. The movement ability can mainly be attributed to the periodic growth, detachment, and/or collapse of the bubble. However, subjected to the experimental conditions, the mechanism of bubble evolution on the motion of the micromotor could not be elucidated clearly. In this work, a finite element method was employed for exploring the role of bubble evolution in bubble-propelled Janus micromotors, which emphasized the growth and collapse of bubbles. After the proposed model was verified by the scallop theorem, the influence of the growth and rapid collapse of bubbles on micromotors was investigated. Results show that the growth and collapse of a bubble can drive the micromotor to produce a displacement, but the displacement caused by a bubble collapse is significantly greater than that caused by bubble growth. The reasons for this phenomenon are analyzed and explained. In addition to the influence of bubble size, the collapse time of the bubble is also investigated.

Funder

National Natural Science Foundation of China

Key projects of Science and Technology of Henan Province

Doctoral Research Fund of Zhengzhou University of Light Industry

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advanced micromotor platforms for water quality detection and remediation;Journal of Environmental Chemical Engineering;2024-08

2. Artificial Micro/nanomotors: Turning Sci-Fi into reality;European Polymer Journal;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3