Ag2S-Ag2O-Ag/poly-2-aminobenzene-1-thiol Nanocomposite as a Promising Two-Electrode Symmetric Supercapacitor: Tested in Acidic and Basic Mediums

Author:

Rabia Mohamed1ORCID,Elsayed Asmaa M.2,Abdallah Alnuwaiser Maha3ORCID,Abdelazeez Ahmed Adel A.4ORCID

Affiliation:

1. Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt

2. TH-PPM Group, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt

3. Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

4. Nanoscale Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA

Abstract

A Ag2S-Ag2O-Ag/poly-2-aminobenzene-1-thiol (P2ABT) nanocomposite was prepared using the photopolymerization reaction using AgNO3 as an oxidant. The size of the nanocomposite was about 40 nm, in which the morphology was confirmed using TEM and SEM analyses. The functional groups of Ag2S-Ag2O-Ag/P2ABT were confirmed using FTIR; also, XRD confirmed the inorganic Ag2S, Ag, and Ag2O formation. This nanocomposite has great performance in supercapacitor applications, with it tested in acidic (1.0 M HCl) and basic mediums (1.0 M NaOH). This pseudo-capacitor has great performance that appeared through the charge time in an acid medium in comparison to the basic medium with values of 118 s and 103 s, correspondingly. The cyclic voltammetry (CV) analysis further confirmed the excellent performance of the supercapacitor material, as indicated by the large area under the cyclic curve. The specific capacitance (CS) and energy density (E) values (at 0.3 A/g) were 92.5 and 44.4 F/g and 5.0 and 2.52 W·h·Kg−1 in the acidic and basic mediums, correspondingly. The charge transfer was studied through a Nyquist plot, and the produced Rs values were 4.9 and 6.2 Ω, respectively. Building on these findings, our objective is to make a significant contribution to the progress of supercapacitor technology through a prototype design soon.

Funder

Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3