Numerical and Experimental Investigation on a “Tai Chi”-Shaped Planar Passive Micromixer

Author:

Xia Annan1,Shen Cheng2,Wei Chengfeng3,Meng Lingchen1,Hu Zhiwen1,Zhang Luming1,Chen Mengyue1,Li Liang1,He Ning1,Hao Xiuqing1ORCID

Affiliation:

1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China

2. College of Aerospace Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China

3. Beijing Jingdiao Group, Beijing 102308, China

Abstract

(1) Background: Microfluidic chips have found extensive applications in multiple fields due to their excellent analytical performance. As an important platform for micro-mixing, the performance of micromixers has a significant impact on analysis accuracy and rate. However, existing micromixers with high mixing efficiency are accompanied by high pressure drop, which is not conducive to the integration of micro-reaction systems; (2) Methods: This paper proposed a novel “Tai Chi”-shaped planar passive micromixer with high efficiency and low pressure drop. The effect of different structural parameters was investigated, and an optimal structure was obtained. Simulations on the proposed micromixer and two other micromixers were carried out while mixing experiments on the proposed micromixer were performed. The experimental and simulation results were compared; (3) Results: The optimized values of the parameters were that the straight channel width w, ratio K of the outer and inner walls of the circular cavity, width ratio w1/w2 of the arc channel, and number N of mixing units were 200 μm, 2.9, 1/2, and 6, respectively. Moreover, the excellent performance of the proposed micromixer was verified when compared with the other two micromixers; (4) Conclusions: The mixing efficiency M at all Re studied was more than 50%, and at most Re, the M was nearly 100%. Moreover, the pressure drop was less than 18,000 Pa.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province, China

College Young Teachers Fund of the Fok Ying Tung Education Foundation

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Design and Investigation of Hybrid a Microfluidic Micromixer;Applied Sciences;2024-06-19

2. Optimal design of micromixer for preparation of nanoliposomes;Chemical Engineering and Processing - Process Intensification;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3