A Neural Network Approach to Reducing the Costs of Parameter-Setting in the Production of Polyethylene Oxide Nanofibers

Author:

Solis-Rios Daniel1,Villarreal-Gómez Luis Jesús23ORCID,Goyes Clara Eugenia1ORCID,Fonthal Rico Faruk1ORCID,Cornejo-Bravo José Manuel3ORCID,Fong-Mata María Berenice2ORCID,Calderón Arenas Jorge Mario1,Martínez Rincón Harold Alberto1,Mejía-Medina David Abdel2ORCID

Affiliation:

1. Grupo de Investigación en Ingeniería Biomédica, Universidad Autónoma de Occidente, Cali 760030, Colombia

2. Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana 21500, Baja California, Mexico

3. Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 21500, Baja California, Mexico

Abstract

Nanofibers, which are formed by the electrospinning process, are used in a variety of applications. For this purpose, a specific diameter suited for each application is required, which is achieved by varying a set of parameters. This parameter adjustment process is empirical and works by trial and error, causing high input costs and wasting time and financial resources. In this work, an artificial neural network model is presented to predict the diameter of polyethylene nanofibers, based on the adjustment of 15 parameters. The model was trained from 105 records from data obtained from the literature and was then validated with nine nanofibers that were obtained and measured in the laboratory. The average error between the actual results was 2.29%. This result differs from those taken in an evaluation of the dataset. Therefore, the importance of increasing the dataset and the validation using independent data is highlighted.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3