Porosity Effects on Static Performance of Carbon Nanotube-Reinforced Meta-Nanocomposite Structures

Author:

Ebrahimi Farzad1ORCID,Dabbagh Ali1ORCID

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin P.O. Box 3414896818, Iran

Abstract

A mixture of outstanding merits of polymer nanocomposites (PNCs) and metamaterials can lead to the development of ultra-light meta-nanomaterials whose high sensitivity can be efficiently used in wearable strain sensors. Thus, reliable data about the performance of structural elements manufactured from such meta-nanomaterials are needed before implementing their design. Motivated by this issue, the negative impacts of pores in the microstructure and carbon nanotubes’ (CNTs’) wavy configuration on the nonlinear bending features of thick beams consisted of auxetic CNT-reinforced (CNTR) polymers are probed for the first time. The impacts of distinct porosity distributions on the mechanical reaction of the system are covered in this article. In addition, a very low computationally cost homogenization is implemented herein to consider the waviness’ influence on the reinforcement mechanism in the auxetic PNC material. Moreover, higher-order shear deformation theory (HSDT) is followed and merged with non-linear definition of strain tensor with the aid of von Kármán’s theory to gather the equations describing the problem. Thereafter, the famous Navier’s exact solution is employed towards solving the problem for thick beams with simple supports at both ends. A comparison of our data with those existing in the literature certifies the accuracy of the presented modeling. The outcomes indicate on the remarkable rise in the flexural deformation of the auxetic PNC beam while the coefficient of porosity is raised. It is also shown that utilization of thick-walled cells in the re-entrant lattice can help to control the system’s total deflection. In addition, if the non-ideal shape of the nanofillers is ignored, the deflection of the meta-nanomaterial beam will be much larger than that of ideal calculations.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3