Multidisciplinary Design Optimization for a Solar-Powered Exploration Rover Considering the Restricted Power Requirement

Author:

Kim Kun-JungORCID,Yu Kee-HoORCID

Abstract

The energy requirements of a solar-powered exploration rover constrain the mission duration, traversability, and tractive capability under the given limited usable power. Thus, exploration rover design, more specifically, rover wheel design (related to considerable energy consumption in driving), plays a significant role in the success of exploration missions. This paper describes the modeling of an operational environment and a multi-body dynamics (MBD) simulation tool based on wheel-terrain interaction model to predict the dynamic behavior on a digital elevation model (DEM) map. With these simulation environments, a multidisciplinary optimal wheel design methodology, integrating the MBD simulation tool and non-dominated sorting genetic algorithm-II (NSGA-II), is developed. Design parameters are chosen through sensitivity analysis. These multi-objective optimizations in dynamic states are conducted to obtain the optimal wheel dimension that meet the limited power condition with maximal tractive capability under the given operational environment. Furthermore, numerical and experimental verification using a single wheel testbed on lunar simulant are conducted to convincingly validate the derived optimization results. Finally, these results reveal that the proposed design methodology is an effective approach to deciding the best design parameter among a large variety of candidate design points considering the restricted power requirement.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference76 articles.

1. Lunar Surface Mobility Systems Comparison and Evolution (MOBEV). Final Presentation Report, NASA-CR-92641;Weatherred,1966

2. Evaluating the effect of tire parameters on required drawbar pull energy model using adaptive neuro-fuzzy inference system

3. Theory of Land Locomotion: The Mechanics of Vehicle Mobility;Bekker,1956

4. Introduction to Terrain-Vehicle Systems;Bekker,1969

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact of Lunar Dust on Free Space Optical (FSO) Energy Harvesting;2024 IEEE Aerospace Conference;2024-03-02

2. A single wheel test rig for ocean world rovers;Journal of Terramechanics;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3