Enrichment of Li–Ga–Zr–Hf and Se–Mo–Cr–V–As–Pb Assemblages in the No. 11 Superhigh Organic Sulfur Coal from the Sangshuping Coal Mine, Weibei Coalfield, Shaanxi, North China

Author:

Li JingORCID,Wu Peng,Yang Guanghua,Pan Lei,Zhuang Xinguo,Querol Xavier,Moreno NataliaORCID,Li Baoqing,Shangguan Yunfei

Abstract

Superhigh organic sulfur(SHOS) coals have currently attracted great attention due to their typical depositional environments and formation history as well as their great negative impact on the ecosystem. This study investigated the geochemistry of the No. 11coalof the Late Carboniferous Taiyuan Formation from the Sangshuping coalmine, Hancheng miningarea, Weibei coalfield, Shaanxi, North China. The No. 11 coal is a high-sulfur coal with a large proportion of organic sulfur content (3.7 to 5.5%, avg. 4.4%) and belongs to typical SHOS coal. The high sulfur content in the Sangshuping coal mine has been mainly caused by the combined influences of seawater and hydrothermal fluids. The SHOS in No. 11 coal was formed in the Fe-poor and S-rich high-marine influenced occlusive environment. During the late coalification stage, a high proportion of pyritic sulfur was formed due to sufficient Fe supply from the Fe–S-rich epigenetic hydrothermal fluids. The No. 11 SHOS coal is enriched in Li–Ga–Zr–Hf and Se–Mo–Cr–V–As–Pb element assemblages. The sediment provenance of the Sangshuping coal mine is predominantly felsic–intermediate rocks from both the Yinshan and Qinling Oldland. However, the elevated concentrations of critical elements (Li, Ga, Zr, and Hf) in the No. 11 coal are primarily inherited from the Yinshan Oldland. The enrichment of the Se–Mo–Cr–V–As–Pb assemblage in No. 11 coal can be ascribed to the influence of both seawater and epigenetic hydrothermal activity.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3