The Data-Driven Multi-Step Approach for Dynamic Estimation of Buildings’ Interior Temperature

Author:

Villa StefanoORCID,Sassanelli ClaudioORCID

Abstract

Buildings are among the main protagonists of the world’s growing energy consumption, employing up to 45%. Wide efforts have been directed to improve energy saving and reduce environmental impacts to attempt to address the objectives fixed by policymakers in the past years. Meanwhile, new approaches using Machine Learning regression models surged in the modeling and simulation research context. This research develops and proposes an innovative data-driven black box predictive model for estimating in a dynamic way the interior temperature of a building. Therefore, the rationale behind the approach has been chosen based on two steps. First, an investigation of the extant literature on the methods to be considered for tests has been conducted, shrinking the field of investigation to non-recursive multi-step approaches. Second, the results obtained on a pilot case using various Machine Learning regression models in the multi-step approach have been assessed, leading to the choice of the Support Vector Regression model. The prediction mean absolute error on the pilot case is 0.1 ± 0.2 °C when the offset from the prediction instant is 15 min and grows slowly for further future instants, up to 0.3 ± 0.8 °C for a prediction horizon of 8 h. In the end, the advantages and limitations of the new data-driven multi-step approach based on the Support Vector Regression model are provided. Relying only on data related to external weather, interior temperature and calendar, the proposed approach is promising to be applicable to any type of building without needing as input specific geometrical/physical characteristics.

Funder

European Commission

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference41 articles.

1. https://ec.europa.eu/clima/policies/strategies/2030_en

2. Limiting Global Climate Change to 2 Degrees Celsius The Way Ahead for 2020 and Beyond: Communication from the Commission to the Council, the European Parliament, the European Economic and and Social Committee and the Committee of the Regions,2007

3. Energy Balance Sheets—2016 Data—2018 Edition,2018

4. Intelligent building energy management system using rule sets

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3