Impact of Stationary and Dynamic Conditions on the U-Value Measurements of Heavy-Multi Leaf Walls by Quantitative IRT

Author:

Tejedor BlancaORCID,Barreira EvaORCID,Peixoto de Freitas Vasco,Kisilewicz Tomasz,Nowak-Dzieszko Katarzyna,Berardi UmbertoORCID

Abstract

Infrared thermography (IRT) has become a commonly applied non-destructive testing method for assessing building envelopes. Like any diagnosis tool, IRT requires an appropriate experience and principle understanding, mainly when the method is used for quantitative analyses. The challenges of the IRT often deal with the dynamic properties of building partitions. Climatic conditions have a certain variability, and the accumulated energy storage in the building components can affect their temperature as well as the calculated thermal performance. This paper aims to analyze how stationary and dynamic regimes of a quantitative IRT test could impact the measured thermal transmittance of heavy multi-leaf walls. Investigation in two European countries with different climatic conditions are reported. In this way, it is discussed which boundary conditions should be guaranteed to provide reliable information about a building envelope using quantitative IRT. In order to check the quality of the measurements, the heat flux meter (HFM) method was also implemented, following the ISO 9869. The research revealed that it could be possible to use short-lasting tests in the climatic conditions of Southern Europe, while long-term tests should be implemented in Northern European countries where climatic conditions are less regular.

Funder

Polish National Agency for Academic Exchange

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference44 articles.

1. Quantification of heat energy losses through the building envelope: A state-of-the-art analysis with critical and comprehensive review on infrared thermography

2. Different Strategies for Improving Summer Thermal Comfort in Heavyweight Traditional Buildings

3. Applications of the infrared thermography in the energy audit of buildings: A review

4. ASTM C1060-90. Standard Practice for Thermographic Inspection of Insulation Installations in Envelope Cavities of Frame Buildings,2003

5. ISO 6781-3:2015. Performance of Buildings. Detection of Heat, Air and Moisture Irregularities in Buildings by Infrared Methods—Part 3: Qualifications of Equipment Operators, Data Analysts and Report Writers,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3