An Interval Mathematic-Based Methodology for Reliable Resilience Analysis of Power Systems in the Presence of Data Uncertainties

Author:

Pepiciello AntonioORCID,Vaccaro AlfredoORCID,Lai Loi LeiORCID

Abstract

Prevention and mitigation of low probability, high impact events is becoming a priority for power system operators, as natural disasters are hitting critical infrastructures with increased frequency all over the world. Protecting power networks against these events means improving their resilience in planning, operation and restoration phases. This paper introduces a framework based on time-varying interval Markov Chains to assess system’s resilience to catastrophic events. After recognizing the difficulties in accurately defining transition probabilities, due to the presence of data uncertainty, this paper proposes a novel approach based on interval mathematics, which allows representing the elements of the transition matrices by intervals, and computing reliable enclosures of the transient state probabilities. The proposed framework is validated on a case study, which is based on the resilience analysis of a power system in the presence of multiple contemporary faults. The results show how the proposed framework can successfully enclose all the possible outcomes obtained through Monte Carlo simulation. The main advantages are the low computational burden and high scalability achieved.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3