Attribute Selection Based on Constraint Gain and Depth Optimal for a Decision Tree

Author:

Sun HuainingORCID,Hu Xuegang,Zhang Yuhong

Abstract

Uncertainty evaluation based on statistical probabilistic information entropy is a commonly used mechanism for a heuristic method construction of decision tree learning. The entropy kernel potentially links its deviation and decision tree classification performance. This paper presents a decision tree learning algorithm based on constrained gain and depth induction optimization. Firstly, the calculation and analysis of single- and multi-value event uncertainty distributions of information entropy is followed by an enhanced property of single-value event entropy kernel and multi-value event entropy peaks as well as a reciprocal relationship between peak location and the number of possible events. Secondly, this study proposed an estimated method for information entropy whose entropy kernel is replaced with a peak-shift sine function to establish a decision tree learning (CGDT) algorithm on the basis of constraint gain. Finally, by combining branch convergence and fan-out indices under an inductive depth of a decision tree, we built a constraint gained and depth inductive improved decision tree (CGDIDT) learning algorithm. Results show the benefits of the CGDT and CGDIDT algorithms.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An applied study of multi-layer decision tree optimization algorithms in machine learning;Applied Mathematics and Nonlinear Sciences;2024-01-01

2. Research on an improved prediction model based on decision tree algorithm;2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA);2022-10-28

3. Heat Flux Estimation at Pool Boiling Processes with Computational Intelligence Methods;Processes;2019-05-17

4. An IoT-Based Intelligent Wound Monitoring System;IEEE Access;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3