Abstract
Uncertainty evaluation based on statistical probabilistic information entropy is a commonly used mechanism for a heuristic method construction of decision tree learning. The entropy kernel potentially links its deviation and decision tree classification performance. This paper presents a decision tree learning algorithm based on constrained gain and depth induction optimization. Firstly, the calculation and analysis of single- and multi-value event uncertainty distributions of information entropy is followed by an enhanced property of single-value event entropy kernel and multi-value event entropy peaks as well as a reciprocal relationship between peak location and the number of possible events. Secondly, this study proposed an estimated method for information entropy whose entropy kernel is replaced with a peak-shift sine function to establish a decision tree learning (CGDT) algorithm on the basis of constraint gain. Finally, by combining branch convergence and fan-out indices under an inductive depth of a decision tree, we built a constraint gained and depth inductive improved decision tree (CGDIDT) learning algorithm. Results show the benefits of the CGDT and CGDIDT algorithms.
Subject
General Physics and Astronomy
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献