A Dynamic Partition Model for Multi-Energy Power Grid Energy Balance Considering Electric Vehicle Response Willingness

Author:

Qiu Shi1,Zhang Kun1,Chen Zhuo1,Ma Yiling2,Chen Zhe3

Affiliation:

1. Shenyang University of Technology, Shenyang 110870, China

2. Electric Power Research Institute of State Grid Liaoning Electric Power Co., Ltd., Shenyang 110055, China

3. Aalborg University, 9220 Aalborg, Denmark

Abstract

In multi-energy power grids in which electric vehicles (EVs) participate in response, there are significant differences in the power balance between multi-energy supply and load at different time scales and spatial scales. To optimize the energy balance demand of each region, this paper proposes a dynamic partition coordination model for power grid energy regulation demand that considers the willingness of electric vehicles to respond and the uncertainties related to sources, loads, and storage. Firstly, the charging and discharging characteristics of multi-energy conversion devices in power grids, as well as the response uncertainties of these devices, are studied, and a source, load, and storage uncertainty model is established. Then, based on the Markov random field theory and the energy prior model, the dynamic partition model and its solution algorithm for the multi-energy power grid are proposed. Finally, a simulation system is established based on the actual operating data of a multi-energy power grid, and the proposed method is simulated and analyzed. The results indicate that the energy balance partition optimization method proposed in this article is effective. The application of the method proposed in this article can fully leverage the regulatory potential of energy conversion equipment, effectively reduce the proportion of traditional energy supply and peak shaving capacity, and improve the utilization rate of renewable energy.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3