Estimation of Critical Nitrogen Concentration Based on Leaf Dry Matter in Drip Irrigation Spring Maize Production in Northern China

Author:

Jia BiaoORCID,Fu Jiangpeng,Liu Huifang,Li Zhengzhou,Lan Yu,Wei Xue,Zhai Yongquan,Yun Bingyuan,Ma Jianzhen,Zhang Hao

Abstract

The application of nitrogen (N) fertilizer not only increases crop yield but also improves the N utilization efficiency. The critical N concentration (Nc) can be used to diagnose crops’ N nutritional status. The Nc dilution curve model of maize was calibrated with leaf dry matter (LDM) as the indicator, and the performance of the model for diagnosing maize N nutritional status was further evaluated. Three field experiments were carried out in two sites between 2018 and 2020 in Ningxia Hui Autonomous Region with a series of N levels (application of N from 0 to 450 kg N ha−1). Two spring maize cultivars, i.e., Tianci19 (TC19) and Ningdan19 (ND19), were utilized in the field experiment. The results showed that a negative power function relationship existed between LDM and leaf N concentration (LNC) for spring maize under drip irrigation. The Nc dilution curve equation was divided into two parts: when the LDM < 1.11 t ha−1, the constant leaf Nc value was 3.25%; and when LDM > 1.11 t ha−1, the Nc curve was 3.33LDM−0.24. The LDM-based Nc curve can well distinguish data on the N-limiting and non-N-limiting N status of maize, which was independent of maize varieties, growing seasons, and stages. Additionally, the N nutrition index (NNI) had a significant linear correlation with the relative leaf dry matter (RLDM). This study revealed that the LDM-based Nc dilution curve could accurately identify spring maize N status under drip irrigation. NNI can thus, be used as a robust and reliable tool to diagnose the N nutritional status of maize.

Funder

the Natural Science Foundation of Ningxia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3