SaaMES: SaaS-Based MSA/MTA Model for Real-Time Control of IoT Edge Devices in Digital Manufacturing

Author:

Do SanghoonORCID,Kim Woohang,Cho Huiseong,Jeong JongpilORCID

Abstract

As a software delivery model, Software as a Service (SaaS) has attracted considerable attention from software providers and users. Most traditional companies are shifting their businesses to an SaaS model. SaaS development is a very complicated process and its success depends on architectural design and development. A Manufacturing Execution System (MES) was used at the expense of licensing fees for features not used in the On-Premise environment, although the features used vary depending on the manufacturing environment. In an SaaS environment, MES is applied with a function-specific container approach through a Microservice Architecture (MSA) to select and employ only the necessary functions. Furthermore, as the number of customers of virtualized applications increases in SaaS-based services, complexity and operating costs increase; thus, Multi-tenancy Architecture (MTA) technology, which serves all customers through a single instance of the application is crucial. Thus, in this study, we investigate the MTA approach and propose a suitable MTA for the manufacturing execution system. Real-time response is crucial to achieving a cyber-physical system of digital manufacturing in SaaS-based MES. Furthermore, SaaS-based big data analytics and decision-making cannot meet the needs of numerous applications in real-time sensitive workplaces. In this study, we propose an SaaS-based MSA/MTA model for real-time control of Internet of Things (IoT) Edge in digital manufacturing (SaaMES), an architecture of SaaS-based MES with MSA and MTA to meet vulnerable workplaces and real-time responses in Cloud environments. The analysis is used by applying the Autoencoder and Generic Adversarial Networks analysis model to IoT Edge for the connection between the Cloud environment and work site to enable real-time response and decision-making through communication using OPC-UA and small-scale analysis.

Funder

Institute for Information and Communications Technology Promotion

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cross-Platform and Multi-Terminal Collaborative Software Information Security Strategy;2024 5th International Conference on Mobile Computing and Sustainable Informatics (ICMCSI);2024-01-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3