Shared Cycling Demand Prediction during COVID-19 Combined with Urban Computing and Spatiotemporal Residual Network

Author:

Cao Yi,Wang Yixiao

Abstract

The regularity and demand predictions of shared cycling are very necessary and challenging for the management and development of urban pedestrian and bicycle traffic. The bicycle-sharing system has the problem of spatial and temporal demand fluctuations and presents a very complex nonlinear regularity. The demand for shared bicycles is affected by many factors, including time, space, weather and the situation of COVID-19. This study proposes a new bicycle-sharing demand forecasting model (USTARN) based on the impact of COVID-19, which combines urban computing and spatiotemporal attention residual network. USTARN consists of two parts. In the first part, a spatiotemporal attention residual network model is established to learn the temporal correlation and spatial correlation of shared bicycle demand. The temporal characteristic branches of each spatial small region are trained, respectively, to predict the shared bicycle demand in batches in different regions and periods according to the historical data. In order to improve the prediction accuracy of the model, the second part of the model adjusts and redistributes the prediction results of the first part by learning other information of the city, such as the severity of COVID-19, weather, temperature, wind speed and holidays. It can predict the demand for shared bicycles in different urban areas in different periods and different severities of COVID-19. This study uses the order data of shared bicycles during the period of COVID-19 in 2020 obtained from the open data platform of Shenzhen municipal government as verification, analyzes the spatiotemporal regularity of the system demand and discusses the impact of the number of newly diagnosed patients and the daily minimum temperature on the demand for shared bicycles. The results show that USTARN can fully reflect time, space, the epidemic situation, weather and temperature, and the prediction results of the impact of wind speed and other factors on the demand for shared bicycles are better than the classical methods.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference41 articles.

1. Data-Driven Intelligent Transportation Systems: A Survey

2. Attention based simplified deep residual network for citywide crowd flows prediction

3. Beijing Transportation Blue Book: Beijing Transportation Development Report (2021),2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3