Mitigating Autogenous Shrinkage of Alkali-Activated Slag Mortar by Using Porous Fine Aggregates as Internal Curing Agents

Author:

Shen WenfengORCID,Wang Liang,Chen Peiyuan,Wang Hao,Cao Ke

Abstract

Alkali-activated slag (AAS) is beneficial for resource conservation in that it consumes little primary industrial energy, and it also performs well in terms of its mechanical properties and durability. However, its higher autogenous shrinkage compared to OPC mortars is a serious issue impeding AAS-based binder development for practical applications. This study investigated the feasibility and performance of active recycled aggregates when applied as man-made internal curing agents (MAs) for AAS mortars. They were applied as aggregate replacements for sand in this study to investigate the effects on the autogenous shrinkage, internal relative humidity (IRH), compressive strength, hydration properties and pore structure of AAS mortars. Three MAs with the sizes of 0.63–1.25 mm (MA 0.63), 1.25–2.5 mm (MA 1.25) and 2.5–4.75 mm (MA 2.5) were used. The results showed that MAs have potential as internal curing agents to mitigate the autogenous shrinkage of AAS mortars. When using saturated MAs, the autogenous shrinkage of AAS mortars was reduced by 87.68%. The addition of MAs also significantly prolonged the critical time taken for the IRH to start decreasing from 100%.

Funder

National Science Foundation of China

Natural Science Foundation of University in Anhui Province

Natural Science Foundation of Anhui Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3