Abstract
The ratio between normal data and fault data generated by electric submersible pumps (ESPs) in production is prone to imbalance, and the information carried by the fault data generally as a minority sample is easily overwritten by the normal data as a majority sample, which seriously interferes with the fault identification effect. For the problem that data imbalance under different working conditions of ESPs causes the failure data to not be effectively identified, a fault identification method of ESPs based on unsupervised feature extraction integrated with migration learning was proposed. Firstly, new features were extracted from the data using multiple unsupervised methods to enhance the representational power of the data. Secondly, multiple samples of the source domain were obtained by multiple random sampling of the training set to fully train minority samples. Thirdly, the variation between the source domain and target domain was reduced by combining weighted balanced distribution adaptation (W-BDA). Finally, several basic learners were constructed and combined to integrate a stronger classifier to accomplish the ESP fault identification tasks. Compared with other fault identification methods, our method not only effectively enhances the performance of fault data features and improves the identification of a few fault data, but also copes with fault identification under different working conditions.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献