A Water Balloon as an Innovative Energy Storage Medium

Author:

Chang Chun-TiORCID,Huang Pin Tuan

Abstract

Soft rubbery materials are capable of withstanding large deformation, and stretched rubber contracts when heated. Additionally, rubber balloons exhibit non-monotonic pressure–volume curves. These unique properties have inspired numerous ingenious inventions based on rubber balloons. To the authors’ knowledge, however, it is surprising that these properties have not inspired any study that exploits the elasticity of rubber balloons for energy storage. Motivated by these, this study examines the performance of water balloons as energy storage media. In each experiment, a single water balloon is implemented using a flat membrane, and it is subject to repeated inflation, heating, deflation, and cooling. Inflating the balloon deposits energy into it. The heating simulates the recycling of waste heat. The balloon delivers work during its deflation. Finally, the cooling completes the energy-storage cycle. The performance is evaluated in terms of the balloon’s transferred energies, efficiencies, and service life. Simple as it is, a water balloon is actually an impressively efficient energy storage medium. The efficiency is 85–90% when a water balloon stores and releases energy at room temperature. Recycling waste heat can boost a balloon’s efficiency beyond 100%, provided that the cost of the heat is negligible so that the heat is not taken as part of the input energy. However, heating shortens the service life of a balloon and reduces the total energy it can accommodate. By running fatigue tests on balloons, this study reveals the trade-off between a water balloon’s efficiency and its longevity. These results shall serve as a useful guide for implementing balloon-based mechanical devices not limited to energy-storage applications.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference67 articles.

1. Large elastic deformations of isotropic materials vii. experiments on the deformation of rubber;Rivlin;Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci.,1951

2. Large elastic deformations of isotropic materials ix. the deformation of thin shells;Adkins;Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci.,1952

3. Large elastic deformations of thin rubber membranes

4. On the similarities between the resonance behaviors of water balloons and water drops

5. Tensile instability of initially spherical balloons

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3