Experimental Research on Bonded Anchorage of Carbon Fiber Reinforced Polymer Prestressed Strands

Author:

Jia Liqiang,Wang Bo,Tafsirojjaman T.ORCID

Abstract

Aiming at the problems of a large number of corrosion and fatigue damage of the current prestressed steel strands, this paper adopts carbon fiber-reinforced composite (CFRP) strand with better corrosion resistance and fatigue resistance and uses it in concrete structures. The bond anchorage is usually used to anchor CFRP tension members, which bonds the CFRP through the binding medium. Through experimental research on the CFRP strand bond anchorage, the inner taper of the CFRP prestressed strand cone was anchored and the influence of different anchor lengths and bonding media on the anchorage performance was determined. The test results demonstrate that the taper of the conical anchorage described in this paper is a key factor affecting its anchorage performance and increasing the inner taper within a certain range is beneficial to improving the anchorage performance of the conical anchorage. The bonded anchorage of the CFRP prestressed strand with a 200 mm anchor is the most reliable and efficient, as the taper of the 200 mm anchor is the largest. The average anchoring efficiency coefficient of the 200 mm anchor was 96.4%, which is 3.7% and 2.6% higher than the average anchoring efficiency coefficient of 220 mm and 250 mm anchors, respectively. The anchoring efficiency of the anchor is also high (94.1%) when the epoxy resin mortar is used as the bonding medium. Moreover, after an appropriate amount of quartz sand is added to the epoxy resin, the overall comprehensive performance of the anchor can be improved to a certain extent and the stress of the CFRP strand can be improved. The coupling between ultra-high-performance concrete dry mix (UHPC-GJL) and CFRP strand materials is not suitable for UHPC-GJL being used, as its binding medium as the average anchoring efficiency coefficient is only 44.5% when UHPC-GJL is used as the anchor bonding medium.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3