Synchronization of a Passive Oscillator and a Liquid Crystal Elastomer Self-Oscillator Powered by Steady Illumination

Author:

Li KaiORCID,Gan Fenghui,Du Changshen,Cai Guojun,Liu JunxiuORCID

Abstract

Self-oscillators have the advantages of actively harvesting energy from external steady environment, autonomy, and portability, and can be adopted as an engine to drive additional working equipment. The synchronous behavior of self-oscillators and passive oscillators may have an important impact on their functions. In this paper, we construct a self-oscillating system composed of a passive oscillator and an active liquid crystal elastomer self-oscillator powered by steady illumination, and theoretically investigate the synchronization of two coupled oscillators. There exist three synchronous regimes of the two coupled oscillators: static, in-phase, and anti-phase. The mechanisms of self-oscillations in in-phase and anti-phase synchronous regimes are elucidated in detail by calculating several key physical parameters. In addition, the effects of spring constant, initial velocity, contraction coefficient, light intensity, and damping coefficient on the self-oscillations of two coupled oscillators are further investigated, and the critical conditions for triggering self-oscillations are obtained. Numerical calculations show that the synchronous regime of self-oscillations is mainly determined by the spring constant, and the amplitudes of self-oscillations of two oscillators increase with increasing contraction coefficient, light intensity, and spring constant, while decrease with increasing damping coefficient. This study deepens the understanding of synchronization between coupled oscillators and may provide new design ideas for energy harvesters, soft robotics, signal detection, active motors, and self-sustained machinery.

Funder

University Natural Science Research Project of Anhui Province

Anhui Provincial Natural Science Foundation

National Natural Science Foundation of China

Postgraduate Research Project of Universities in Anhui Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3