Effects of the Combined Application of Trimethylated Chitosan and Carbodiimide on the Biostability and Antibacterial Activity of Dentin Collagen Matrix

Author:

Wang Xiangyao,Li Qilin,Lu Haibo,Liu Zhuo,Wu Yaxin,Mao JingORCID,Gong ShiqiangORCID

Abstract

The structural integrity of a dentin matrix that has been demineralized by the clinical use of etchants or calcium-depleting endodontic irrigants, such as endodontic ethylenediaminetetraacetic acid (EDTA), is often deteriorated due to the collagenolytic activities of reactivated endogenous enzymes as well as the infiltration of extrinsic bacteria. Therefore, the biomodification of dentin collagen with improved stability and antibacterial activity holds great promise in conservative dentistry. The purpose of this study was to evaluate the effects of the combined application of trimethylated chitosan (TMC) and 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) on the biostability and antibacterial activity of the demineralized dentin collagen matrix. The morphological changes in the collagen matrix were observed by scanning electron microscopy (SEM), the amount of TMC adsorbed on the collagen surface was detected by X-ray photoelectron spectroscopy, and the elastic modulus was measured by a three-point bending device. Dry weight loss and amino acid release were detected to evaluate its anti-collagenase degradation performance. The antibacterial performance was detected by confocal microscopy. The TMC-treated group had less collagen space and a more compact collagen arrangement, while the untreated group had a looser collagen arrangement. The combined application of TMC and EDC can increase the elastic modulus, reduce the loss of elastic modulus, and result in good antibacterial performance. The current study proved that a dentin collagen matrix biomodified by TMC and EDC showed improved biodegradation resistance and antibacterial activities.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3