Alginate Fiber-Enhanced Poly(vinyl alcohol) Hydrogels with Superior Lubricating Property and Biocompatibility

Author:

Zhang Ran,Zhao Wenhui,Ning Fangdong,Zhen Jinming,Qiang Huifen,Zhang Yujue,Liu Fengzhen,Jia Zhengfeng

Abstract

The design of a novel interpenetrating network hydrogel inspired by the microscopic architecture of natural cartilage based on a supramolecular sodium alginate (SA) nanofibril network is reported in this paper. The mechanical strength and toughness of the poly(vinyl alcohol) (PVA) hydrogel were significantly improved after being incorporated with the alginate nanofibril network. The multiple hydrogen bonds between PVA chains and alginate fibers provided an efficient energy dissipation, thus leading to a significant increase in the mechanical strength of the PVA/SA/NaCl hydrogel. The PVA/SA/NaCl hydrogel demonstrated superior water-lubrication and load-bearing performance due to noncovalent interactions compared with pure PVA hydrogels. Moreover, the bioactivity of the PVA/SA/NaCl hydrogel was proved by the MC3T3 cell proliferation and viability assays over 7 days. Therefore, alginate fiber-enhanced hydrogels with high strength and low friction properties are expected to be used as novel biomimetic lubrication materials.

Funder

National Natural Science Foundation of China

Shan Dong Province Nature Science Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3