Recyclability of Opaque PET from High Speed Melt Spinning: Determination of the Structures and Properties of Filaments

Author:

Odet FélixORCID,Ylla Noëllie,Fulchiron RenéORCID,Cassagnau Philippe

Abstract

Recycling opaque Polyethylene terephthalate (PET), which contains 1 to 10 wt % TiO2 submicron particles, has become of interest in the past few years. However, the bottle-to-fiber recyclability of opaque PET has not been assessed yet. In this work, opaque PET packaging has been characterized, and high-speed melt-spun filaments with different amounts of opaque PET (30–50–100%) blended with standard transparent recycled PET (rPET) have been produced in a pilot system. The opaque PET filaments produced have also been compared to a transparent rPET blend with masterbatch PET/TiO2 at different amounts of filler (1–3–6 wt %), produced with the same parameters. The structure-properties relationship of rPET melt-spun fibers has been investigated with crystallinity measurements, amorphous and crystalline phases orientation, and tenacity. It has been observed that the degree of crystallinity, the crystalline and amorphous phases orientation and the tenacity decreases with opaque PET addition and, to a lesser extent, with TiO2 addition. It has been suggested that TiO2 particles are not entirely responsible for the decrease in mechanical properties of opaque PET filaments since opaque rPET filaments have inferior properties to r-PET/TiO2 filaments at the same filler content.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference42 articles.

1. PlasticsEurope.Plastics-the-Facts 2019 http://www.plasticseurope.org/Document/plastics-the-facts2019.aspx?FolID=2

2. PET Bottle Recycling for Sustainable Textiles

3. Ziabicki Orientation Mechanisms in the Development of High-Performance Fibers;Prog. Colloid Polym. Sci.,1993

4. The role of flow-induced crystallisation in melt spinning

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3