Coagulation Mechanism and Compressive Strength Characteristics Analysis of High-Strength Alkali-Activated Slag Grouting Material

Author:

Li Mingjing,Huang Guodong,Cui Yi,Wang Bo,Chang Binbin,Yin Qiaoqiao,Zhang Shuwei,Wang Qi,Feng Jiacheng,Ge Ming

Abstract

In deep coal mining, grouting reinforcement and water blockage are the most effective means for reinforcing the rock mass of extremely broken coal. However, traditional cement grouting materials are not suitable for use in complex strata because of their insufficient early mechanical strength and slow setting time. This study innovatively proposes using alkali-activated grouting material to compensate for the shortcomings of traditional grouting materials and strengthen the reinforcement of extremely unstable broken coal and rock mass. The alkali-activated grouting material was prepared using slag as raw material combined with sodium hydroxide and liquid sodium silicate activation. The compressive strength of specimens cured for 1 d, 3 d, and 28 d was regularly measured and the condensation behavior was analyzed. Using X-ray diffraction and scanning electron microscopy, formation behavior of mineral crystals and microstructure characteristics were further analyzed. The results showed that alkali-activated slag grouting material features prompt and high strength and offers the advantages of rapid setting and adjustable setting time. With an increase in sodium hydroxide content, the compressive strength first increased (maximum increase was 21.1%) and then decreased, while the setting time continued to shorten. With an increase in liquid sodium silicate level, the compressive strength increased significantly (and remained unchanged, maximum increase was 35.9%), while the setting time decreased significantly (and remained unchanged). X-ray diffraction analysis identified the formation of aluminosilicate minerals as the main reason for the excellent mechanical properties and accelerated coagulation rate.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3