Research on Low-Cycle Fatigue Engineered Hybrid Sandwich Ski Construction

Author:

Božák TomášORCID,Müller MiroslavORCID,Kolář ViktorORCID,Tichý MartinORCID,Svobodová JaroslavaORCID,Michna ŠtefanORCID

Abstract

This research is aimed at evaluating the effect of low-cycle fatigue on a newly designed hybrid sandwich ski structure to determine the changes that may occur due to cyclic loading and thus affect its use. This is primarily concerned with the fatigue behavior of the tested ski over different time intervals simulating its seasonal use and its effect on the mechanical properties of the ski, i.e., the durability and integrity of the individual layers of the sandwich ski structure. The ski was subjected to 70,000 deflections by moving the crossbar by 60 mm according to the ski deflection calculation in the arch. The results of the cyclic tests of the engineered ski design showed no significant changes in the ski during loading. The average force required to achieve deflection in the first 10,000 cycles was 514.0 ± 4.2 N. Thereafter, a secondary hardening of the structure occurred during relaxation and the force required increased slightly to 543.6 ± 1.7 N. The required force fluctuated slightly during the measurements and in the last series the value was 540.4 ± 0.8 N. Low-cycle fatigue did not have a significant effect on the mechanical properties of the ski; there was no change in shape or visual delamination of the individual layers of the structure. From the cross-section, local delamination was demonstrated by image analysis, especially between the Wood core and the composite layers E-Glass biaxial and Carbon triaxial.

Funder

Internal grant agency of Faculty of Engineering, Czech University of Life Sciences Prague

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference28 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3