Comparative Investigation on Improved Aerodynamic and Acoustic Performance of Abnormal Rotors by Bionic Edge Design and Rational Material Selection

Author:

Song Wenda,Mu ZhengzhiORCID,Wang Yufei,Zhang Zhiyan,Zhang Shuang,Wang Ze,Li BoORCID,Zhang Junqiu,Niu ShichaoORCID,Han Zhiwu,Ren Luquan

Abstract

Rotor plays a vital role in the dynamical system of an unmanned aerial vehicle (UAV). Prominent aerodynamic and acoustic performance are a long-term pursuit for the rotor. Inspired by excellent quiet flight characteristics of owls, this work adopted bionic edge design and rational material selection strategy to improve aerodynamic and acoustic performance of the rotor. A reference model of rotor prototype with streamlined edges was firstly generated by reverse engineering method. With inspiration from owl wings and feathers, bionic rotors with rational design on leading and trailing edges were obtained. Original and bionic rotors were fabricated with polyamide PA 12 and Resin 9400 by 3D printing technique. Aerodynamic and acoustic performance of the as-fabricated rotors were experimentally measured and analyzed in detail using a self-established test system. Comparative experimental results indicated that the aerodynamic and acoustic performance of the rotors was closely related to the bionic structures, material properties, and rotational speeds. At the same rotational speed, bionic rotor fabricated with Resin 9400 can produce a higher thrust than the prototype one and its power consumption was also reduced. The resulting noise of different bionic rotors and their directivities were comparatively investigated. The results verified the bionic edge design strategy can effectively control the turbulent flow field and smoothly decompose the airflow near the tailing edge, which resulting in enhancing the thrust and reducing the noise. This work could provide beneficial inspiration and strong clues for mechanical engineers and material scientists to design new abnormal rotors with promising aerodynamic and acoustic performance.

Funder

the National Key Research and Development Program of China

the National Natural Science Foundation of China

National Postdoctoral Program for Innovative Talents

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3