Thermal Behaviors, Interfacial Microstructure and Molecular Orientation of Shape Memory Polyurethane/SiO2 Based Sealant for Concrete Pavement

Author:

Shi ShuangORCID,Ma TaoORCID,Gu Linhao,Zhang Yanning

Abstract

Expansion joint failure is one of the main causes that lead to the damages of concrete pavement. The silicon dioxide/shape memory polyurethane (SiO2/SMPU) is a new kind of sealant which can use its shape memory performance to adapt to the width of the expansion joint with the change of pavement temperature, and it can effectively prolong the service life of the pavement and reduce maintenance costs. In this study, the effects of programming and the addition of SiO2 particles to the thermodynamic properties of the specimens were detected using differential scanning calorimetry (DSC), the optimal shape memory programming temperature of which is 72.9 °C. Combined with scanning electron microscopy (SEM) and shape memory effect test, the particles are evenly distributed between the two phases, and the shape fixation rate (Rf) of 98.15% and the shape recovery rate (Rr) of 97.31% show that the composite has a good shape memory effect. Fourier transform infrared spectroscopy (FTIR) and dynamic infrared dichroism illustrate the change of the hydrogen bond of soft and hard segments with the SiO2 particles in the shape memory cycle, revealing the optimal shape memory programming process. This study provides an insight into the reinforcement mechanism of SiO2 nanoparticles in SMPU matrix and verify whether it can meet the engineering requirements of expansion joints when used as a sealant of concrete pavement.

Funder

the fellowship of China Postdoctoral Science Foundation

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling and simulation of shape memory nanocomposites;Shape Memory Polymer-Derived Nanocomposites;2024

2. A study on the bonding performance of PU/AC interface;Case Studies in Construction Materials;2023-12

3. Polyurethanes for Sealants;ACS Symposium Series;2023-11-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3