Mechanical Properties, Melting and Crystallization Behaviors, and Morphology of Carbon Nanotubes/Continuous Carbon Fiber Reinforced Polyethylene Terephthalate Composites

Author:

Qiao Liang,Yan Xu,Tan HongshengORCID,Dong Shuhua,Ju GuannanORCID,Shen Hongwang,Ren Zhaoying

Abstract

Carbon nanotube/continuous carbon fiber reinforced poly(ethylene terephthalate) (CNT/CCF/PET) composites are prepared by melt impregnating. The effects of CF and CNT content on the mechanical properties, melt and crystallization behaviors, and submicroscopic morphology of CNT/CCF/PET composites are studied. The tensile test results show that the increase of CF and the addition of appropriate amount of CNT improved the tensile strength and tensile modulus of the composites. When the content of CNT is 1.0 wt% and the content of CF is 56 wt%, the properties of the composites are the best, with tensile strength of 1728.7 MPa and tensile modulus of 25.1 GPa, which is much higher than that of traditional resin matrix composites. The results of dynamic mechanical analysis (DMA) show that the storage modulus of the composites increased with the increase of CF and CNT content. In particular, the addition of CNT greatly reduced the loss modulus of the composites. Morphological analysis show that the addition of CNT improved the fiber–matrix interface of the composite, which changes from fiber pull-out and fracture failure to fiber matrix fracture failure, and the fiber matrix interface is firmly bonded. In addition, there are polymer coated CNT protrusions on the surface of the fiber was observed. The results of differential scanning calorimetry (DSC) show that the melting temperature and crystallization temperature of the composites increased with the increase of CF content. The addition of CNT had little effect on the melting temperature of the composites, but it further improved the crystallization temperature of the composites. The effect of CNT content on the crystallization kinetics of the composites is studied. The non-isothermal crystallization kinetics of the composites is described by Jeziorny’s improved Avrami equation. The results show that CNT has a great influence on the crystallization type of the composites. As a nucleating agent, CNT has obvious heterogeneous nucleation effect in the composites, which improves the crystallization rate of PET.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3