Parameters Influence on the Dynamic Properties of Polymer-Matrix Composites Reinforced by Fibres, Particles, and Hybrids

Author:

Murčinková ZuzanaORCID,Postawa PrzemysławORCID,Winczek JerzyORCID

Abstract

In this paper, we present an extensive experimental study on the dynamic mechanical properties of composites with polymer matrices, as well as a quantification of the parameters that influence these properties. Polymer-composite matrices make it possible to form any reinforcement arrangement of fibres, particles, and layers, which makes it possible to form composite materials with certain dominant mechanical properties according to the internal arrangement for the application. In this study, we focused on the dynamic properties (i.e., damping parameters, such as the loss factor (tan d), logarithmic decrement (λ), storage modulus (E′), and loss modulus (E″)) of composites with polymer matrices, including parameters such as the fibre material, fabric weaving, fibre orientation, temperature, frequency, particle size, volume of short fibres, and epoxy resin type. If other articles focus on one type of composite and 1–2 parameters, then the benefit of this article lies in our analysis of 8 mentioned parameters in the experimental analysis of 27 different types of composites with polymer matrices. The tested fibre materials were glass, aramid, and carbon; the tested woven fabrics were twill, plain, unidirectional, and satin; the temperature range was from −50 to +230 °C; the frequency was 1 Hz and 10 Hz; the particle size was 0.1–16 mm; the volume percentages of the short fibres were 3, 6, and 12 vol.% of the hybrid polymer composites and the type of polymer matrix. We used the free-damped-vibration method with vibration dynamic signal analysis and the forced-damped vibration of dynamic mechanical thermal analysis for testing. We ranked the parameters that influence the dynamic vibration properties according to the effects. Among sets of results provided in the paper, considering the storage modulus, loss modulus, and loss factor, the best results of the fibre composites were for aramid-fibre-reinforced polymers, regardless of the weave type, with an advantage for unidirectional fabric. The best results of the particle composites were for those with fine filler sizes that incorporated the short fibres.

Funder

Slovak Research and Development Agency

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3