Synthesis of Azo Disperse Dyes with High Absorption for Efficient Polyethylene Terephthalate Dyeing Performances in Supercritical Carbon Dioxide

Author:

Cheng Yu-Wen,Benas Jean-Sebastien,Liang Fang-ChengORCID,Lin Shang-Ming,Sun Ting-Wang,Liu Fu-Chieh,Yu Yang-YenORCID,Kuo Chi-ChingORCID

Abstract

Supercritical carbon dioxide dyeing (SCDD) not only enables strong dyeing performance for a versatile range of polymer material but is also regarded as a green chemical media due to its low environmental impact as well as low risk of product denaturation. Over the decades, azo disperse dyes have been revealed to be efficient dyes and represent the wide majority of dyeing material. Azo dyes possess a wide variety of functional groups to optimize dye synthesis and tune the light absorption properties. Using SCDD, end-chain of different lengths, and functional group exhibiting various electronic affinity, six disperse red azo dyes were synthesized to investigate dyeing performances as woven fabric type, color strain, and color fastness after dyeing are discussed. Dye structure synthesized through a coupling reaction was confirmed by 1H NMR and mass spectroscopy. We found that the light absorption wavelength and absorption coefficient value variation are associated to the nature of the functional group. From the color strength values of the polyethylene terephthalate woven after dyeing, we find that the fiber host and dye dopant chemical structure greatly influence the dyeing process by providing enhanced woven, color strain, and color fastness. In comparison with commercial products, our approach not only improves the dyeing process but also guarantees a strong resistance of the dyed product against water, detergent, perspiration, abrasion, and friction.

Funder

Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3