Synergistic Effects of DOPO-Based Derivative and Organo-Montmorillonite on Flame Retardancy, Thermal Stability and Mechanical Properties of Polypropylene

Author:

Huang WeijiangORCID,Wang Kui,Tu Chunyun,Xu Xiaolu,Tian Qin,Ma Chao,Fu Qiuping,Yan Wei

Abstract

Polypropylene (PP), as a general thermoplastic polymer, is broadly used in different fields. However, the high flammability, melt dripping and poor mechanical properties of PP are a constraint to the expansion of its applications. In this paper, PP composites containing a combination of a phenethyl-bridged DOPO derivative (PN-DOPO) and organic montmorillonite (OMMT) were prepared via melt blending. The synergistic effects of PN-DOPO and OMMT on the flame retardancy, thermal stability and mechanical properties of PP composites were investigated systematically. The results showed that 20 wt% addition of PN-DOPO with OMMT improved the flame retardancy of PP composites. In particular, the introduction of 17 wt% PN-DOPO and 3 wt% OMMT increased the LOI values of the PP matrix from 17.2% to 23.6%, and the sample reached the V-0 level and reduced the heat release rate and total heat release. TGA indicated that OMMT could improve the thermal stability of the PP/PN-DOPO blends and promote the char residues of PP systems. Rheological behaviour showed a higher storage modulus, loss modulus and complex viscosity of PP/PN-DOPO/OMMT composites, suggesting a more effective network structure. In addition, the tensile strength, flexural properties and impact strength of the PP/PN-DOPO/OMMT composites actually increased for a good dispersion effect. Combined with the char layer analysis, the introduction of OMMT promoted more continuous and compact structural layers containing an aluminium–silicon barrier and phosphorus-containing carbonaceous char in the condensed phase. OMMT can improve the flame retardancy, thermal stability and mechanical properties of PP, and, thus, PN-DOPO/OMMT blends can serve as an efficient synergistic system for flame-retarded PP composites.

Funder

National Natural Science Foundation of China

Innovation Group Project of Guizhou Provincial Department of Education

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3