Experimental Analysis of Matrix Cracking in Glass Fiber Reinforced Composite Off-Axis Plies under Static and Fatigue Loading

Author:

Just GordonORCID,Koch IljaORCID,Gude MaikORCID

Abstract

The inter-fiber failure of glass fiber-reinforced epoxy specimens with four different fiber angles was analyzed. Flat specimens were subjected to static and fatigue loading considering different load levels and load ratios. Damage investigation in terms of crack density measurement was performed by transmitted white light imaging using a digital camera and LED illumination from the back of the specimen on a servo-hydraulic testing machine. Static and fatigue results were examined with respect to crack initiation and crack growth, considering the special case of bonding yarns parallel to the fiber directions. The bonding yarns act as stress concentrations, influencing the early cracking behavior, and complicate the detectability of cracks growing underneath or next to the bonding yarns. In cyclic loading, the influence of load level, load ratio, mean stress, fiber orientation, and ply thickness was the focus of the experimental campaign. Cyclic cracking behavior in terms of initiation and growth was analyzed based on the applied loading conditions and laminate configurations. It was found that halving the ply thickness nearly doubled the amount of microcracks in case of high loads. For low loads, no such effect was observed up to 5×105 loading cycles. Experimental findings on individual crack growth confirmed that crack interaction started for crack spacings less than four times the ply thickness and that subsequent crack growth shifted into regions of larger local crack spacing.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3