Application of Taguchi Method to Optimize the Parameter of Fused Deposition Modeling (FDM) Using Oil Palm Fiber Reinforced Thermoplastic Composites

Author:

Ahmad Mohd NazriORCID,Ishak Mohamad Ridzwan,Mohammad Taha Mastura,Mustapha Faizal,Leman ZulkiflleORCID,Anak Lukista Debby Dyne,Irianto ,Ghazali IhwanORCID

Abstract

Fused Deposition Modeling (FDM) is capable of producing complicated geometries and a variety of thermoplastic or composite products. Thus, it is critical to carry out the relationship between the process parameters, the finished part’s quality, and the part’s mechanical performance. In this study, the optimum printing parameters of FDM using oil palm fiber reinforced thermoplastic composites were investigated. The layer thickness, orientation, infill density, and printing speed were selected as optimization parameters. The mechanical properties of printed specimens were examined using tensile and flexural tests. The experiments were designed using a Taguchi experimental design using a L9 orthogonal array with four factors, and three levels. Analysis of variance (ANOVA) was used to determine the significant parameter or factor that influences the responses, including tensile strength, Young’s modulus, and flexural strength. The fractured surface of printed parts was investigate using scanning electron microscopy (SEM). The results show the tensile strength of the printed specimens ranged from 0.95 to 35.38 MPa, the Young’s modulus from 0.11 to 1.88 GPa, and the flexural strength from 2.50 to 31.98 MPa. In addition, build orientation had the largest influence on tensile strength, Young’s modulus, and flexural strength. The optimum printing parameter for FDM using oil palm fiber composite was 0.4 mm layer thickness, flat (0 degree) of orientation, 50% infill density, and 10 mm/s printing speed. The results of SEM images demonstrate that the number of voids seems to be much bigger when the layer thickness is increased, and the flat orientation has a considerable influence on the bead structure becoming tougher. In a nutshell, these findings will be a valuable 3D printing dataset for other researchers who utilize this material.

Funder

Ministry of Higher Education (Malaysia), Universiti Putra Malaysia

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3