Recycling Waste Nonmetallic Printed Circuit Boards for Polyvinyl Chloride Composites

Author:

Moe Aung KyawORCID,Chungprempree Jirasuta,Preechawong JitimaORCID,Sapsrithong Pornsri,Nithitanakul ManitORCID

Abstract

To reduce environmental threats, such as land filling, incineration and soil pollution, which are associated with the improper waste management of waste printed circuit boards, the utilization of NMPCBs from waste PCBs as a filler in composites was pursued. Untreated and treated NMPCBs in varying ratios, 10–30 wt.%, were blended with PVC to produce NMPCB/PVC composites, using the melt-mixing method via an internal mixer, in order to solve the remaining NMPCB waste problem after the valuable metals in PCBs were recovered. The incorporation of the NMPCB with PVC resulted in an increase in the tensile modulus and the thermal stability of the resulting composites. Scanning electron microscopy (SEM) results indicated improved interfacial adhesion between the treated NMPCB and the PVC matrix. The FTIR results of the NMPCB treated with 3-glycidyloxypropyltrimethoxysilane (GPTMS) revealed the formation of Si-O-Si bonds. The densities of the composites were found to increase with an increase in the content of the treated NMPCB, and compatibility improved. The tensile properties of the treated NMPCB/PVC composites were higher than those of the untreated NMPCB/PVC composites, suggesting improved compatibility between the treated NMPCB and PVC. The PVC composite with 10 wt.% of the treated NMPCB showed the optimum tensile properties. It was observed that the tensile modulus of the treated NMPCB/PVC composite increased by 47.65% when compared to that of the neat PVC. The maximum thermal degradation temperature was 27 °C higher than that of the neat PVC. Dynamic mechanical analysis results also support the improved interfacial adhesion as a result of the improvement in the storage modulus at the glassy region, and the loss factor (tan δ) peak shifted to a higher temperature range than that of the PVC and the untreated NMPCB/PVC composite. These studies reveal that the NMPCB was successfully modified with 1 wt.% of GPTMS, which promoted the dispersion and interfacial adhesion in the PVC matrix, resulting in better tensile properties and better thermal stability of the PVC composite.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3