Behaviour of Hybrid Fibre-Reinforced Ternary Blend Geopolymer Concrete Beam-Column Joints under Reverse Cyclic Loading

Author:

Sathish Kumar VeerappanORCID,Ganesan Namasivayam,Indira Pookattu Vattarambath,Murali GunasekaranORCID,Vatin Nikolai IvanovichORCID

Abstract

Beam–column joints are extremely vulnerable to lateral and vertical loads in reinforced concrete (RC) structures. This insufficiency in joint performance can lead to the failure of the whole structure in the event of unforeseen seismic and wind loads. This experimental work was conducted to study the behaviour of ternary blend geopolymer concrete (TGPC) beam-column joints with the addition of hybrid fibres, viz., steel and polypropylene fibres, under reverse cyclic loads. Nine RC beam-column joints were prepared and tested under reverse cyclic loading to recreate the conditions during an earthquake. M55 grade TGPC was designed and used in this present study. The primary parameters studied in this experimental investigation were the volume fractions of steel fibres (0.5% and 1.0%) and polypropylene fibres, viz., 0.1 to 0.25%, with an increment of 0.05%. In this study, the properties of hybrid fibre-reinforced ternary blend geopolymer concrete (HTGPC) beam-column joints, such as their ductility, energy absorption capacity, initial crack load and peak load carrying capacity, were investigated. The test results imply that the hybridisation of fibres effectively enhances the joint performance of TGPC. Also, an effort was made to compare the shear strength of HTGPC beam-column connections with existing equations from the literature. As the available models did not match the actual test results, a method was performed to obtain the shear strength of HTGPC beam-column connections. The developed equation was found to compare convincingly with the experimental test results.

Funder

The research is partially funded by the Ministry of Science and Higher Education of the Russian Federation as part of the World-class Research Center program: Advanced Digital Technologies.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3