Abstract
Background: This study aimed to investigate the biomechanical behaviors of polyether ether ketone (PEEK) and traditional materials (titanium and fiber) when used to restore tooth defects in the form of prefabricated post or customized post via computational modelling. Methods: First, the prototype of natural tooth, and the prototypes of prefabricated post and customized post were established, respectively, whilst the residual root was restored with dentin ferrule using reverse engineering methods. Then, the stress and strain of CFR-PEEK (PEEK reinforced by 30% carbon fiber) and pure PEEK (PEEK without any reprocessing) post were compared with those made in traditional materials using the three-dimensional finite element method. Results: From the stress point of view, compared with metal and fiber posts, CFR-PEEK and pure PEEK prefabricated post both demonstrated reduced post-core interface stress, post stress, post-root cement stress and root cement stress; moreover, CFR-PEEK and pure PEEK customized post demonstrated reduced post stress, post-root cement stress and root cement stress, while the strain of CFR-PEEK post was the closest to that of dentin. Conclusions: Compared with the traditional posts, both the CFR-PEEK and pure PEEK posts could reduce the risk of debonding and vertical root fracture, whether they were used as prefabricated posts or customized posts, but the biomechanical behavior of carbon fiber-reinforced CFR-PEEK restorations was the closest to dentin, no matter if they were used as prefabricated post or customized post. Therefore, the CFR-PEEK post could be more suitable to restore massive tooth defects. Pure PEEK needs filler reinforcement to be used for post-retained restoration.
Funder
National Natural Science Foundation of China
Subject
Polymers and Plastics,General Chemistry