Effects of Radiation on Cross-Linking Reaction, Microstructure, and Microbiological Properties of Whey Protein-Based Tissue Adhesive Development

Author:

Liu Ning,Wang Guorong,Guo Mingruo

Abstract

Whey proteins are mainly a group of small globular proteins. Their structures can be modified by physical, chemical, and other means to improve their functionality. The objectives of this study are to investigate the effect of radiation on protein–protein interaction, microstructure, and microbiological properties of whey protein–water solutions for a novel biomaterial tissue adhesive. Whey protein isolate solutions (10%, 27%, 30%, 33%, and 36% protein) were treated by different intensities (10–35 kGy) of gamma radiation. The protein solutions were analyzed for viscosity, turbidity, soluble nitrogen, total plate count, and yeast and mold counts. The interactions between whey proteins were also analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and scanning electron microscopy. The viscosity of protein solution (27%, w/w) was increased by the treatment of gamma radiation and by the storage at 23 °C. The 35 kGy intensity irradiated soluble nitrogen (10%, w/w) was reduced to about half of the sample treated by 0 kGy gamma radiation. The effects of gamma radiation and storage time can significantly increase the viscosity of whey protein solutions (p < 0.05). Radiation treatment had significant impact on soluble nitrogen of whey protein solutions (p < 0.05). SDS-PAGE results show that the extent of oligomerization of whey protein isolate solutions are increased by the enhancement in gamma radiation intensity. Photographs of SEM also indicate that protein–protein interactions are induced by gamma radiation in the model system. Consistent with above results, the bonding strength increases by the addition of extent of gamma radiation and the concentration of glutaraldehyde. Our results revealed that the combination of gamma-irradiated whey protein isolate solutions and glutaraldehyde can be used as a novel biomaterial tissue adhesive.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3