Abstract
Generally, poly(ethylene glycol) (PEG) is added to poly(lactic acid) (PLA) to reduce brittleness and improve mechanical properties. However, shape memory properties of PEG/PLA blends suffered due to the blend’s incompatibility. To enhance shape memory abilities of the blends, 0.45% maleic anhydride-grafted poly(lactic acid) (PLA-g-MA) was used as a compatibilizer. Thermal and mechanical properties, morphologies, microstructures, and shape memory properties of the blends containing different PLA-g-MA contents were investigated. The compatibilized blend with 2 wt% PLA-g-MA exhibited enhanced tensile modulus, strength, and elongation at break, as well as a lower glass transition temperature and degree of crystallinity than the uncompatibilized blend. Results revealed that PLA-g-MA improved interfacial adhesion between phases and promoted chain entanglement. Shape fixity performance of the compatibilized blends were comparable to that of neat PLA. The compatibilized blend containing 2 wt% PLA-g-MA possessed the best shape fixity and recovery performance. Although a high recovery temperature was expected to enhance the recovery of the PEG/PLA blends, the compatibilized blends can be recovered to their original shape at a lower temperature than the PLA. This study illustrated the possibility of optimizing PLA properties to meet requirements necessary for biomedical applications.
Funder
Thailand Science Research and Innovation (TSRI) and National Science, Research, and Innovation Fund
Suranaree University of Technology
Subject
Polymers and Plastics,General Chemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献