Effect of Fiber Type and Content on Surface Quality and Removal Mechanism of Fiber-Reinforced Polyetheretherketone in Ultra-Precision Grinding

Author:

Gao Shang,Zhou Xinyu,Guo Jiani,Kang Renke

Abstract

Polyetheretherketone (PEEK) is a promising thermo-plastic polymer material due to its excellent mechanical properties. To further improve the mechanical properties of PEEK, different kinds of short fibers are added into the PEEK matrix. The grinding machinability of short-fiber-reinforced PEEK varies with the effect of fiber type and content. Therefore, it is crucial to investigate the surface quality and removal mechanism of fiber-reinforced PEEK in ultra-precision grinding. In this paper, different fiber types and mass fractions of short-fiber-reinforced PEEK, including carbon-fiber-reinforced PEEK (CF/PEEK) and glass-fiber-reinforced PEEK (GF/PEEK), are employed. The grinding machinability of short-fiber-reinforced PEEK was investigated using grinding experiments with grinding wheels of different grit sizes. The effects of the fiber type and mass fraction on the surface quality and removal mechanism during grinding were discussed. The results showed that the brittle–ductile transition depth of carbon fiber was much larger than that of glass fiber, so it was easier to achieve ductile removal in grinding with the carbon fiber. Therefore, the ground surface roughness of CF/PEEK was smaller than that of GF/PEEK under the same grinding conditions. With the increase in carbon fiber mass fraction, the ground surface roughness of CF/PEEK decreased due to the higher hardness. The brittle–ductile transition depth of glass fiber was small, and it was easy to achieve brittle removal when grinding. When the glass fiber removal mode was brittle removal, the GF/PEEK surface roughness increased with the increase in glass fiber content.

Funder

National Natural Science Foundation of China

Major Science and Technology Project of Henan Province of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3