Organic–Inorganic Modification of Magnesium Borate Rod by Layered Double Hydroxide and 3-Aminopropyltriethoxysilane and Its Effect on the Properties of Epoxy Resin

Author:

Zou Sai,Dang Li,Li Ping,Zhu Jiachen,Lan Shengjie,Zhu DonghaiORCID

Abstract

To alleviate the safety hazards associated with the use of epoxy resin (EP), a multifunctional filler was designed. This study firstly combines the superior mechanical properties of magnesium borate rods (MBR) with the excellent smoke suppression and flame-retardant characteristics of layered double hydroxide (LDH). H2PO4− intercalated LDH (LDHP) was coated on the MBR surface to obtain inorganic composite particles MBR@LDHP. Subsequently, MBR@LDHP was modified with 3-aminopropyltriethoxysilane (APES) to obtain organic-inorganic composite particles MBR@LDHP-APES. Eventually, the hybrid particles were added to EP to prepare the composite materials. Thereafter, the morphology, composition, and structure of MBR@LDHP-APES were characterized utilizing scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and X-ray diffraction (XRD). The results indicated the successful preparation of MBR@LDHP-APES, after which we investigated the effects of MBR@LDHP-APES on the smoke suppression, flame retardancy, and mechanical characteristics of EP. As observed, the EP composites containing 7.5 wt% MBR@LDHP-APES exhibited superior smoke suppression and flame retardancy abilities. The limiting oxygen index reached 33.5%, which is 36.73% greater than pure EP, and the lowest values of total heat and smoke release were observed for the composite materials. In addition, the mechanical properties test revealed that MBR@LDHP-APES considerably enhanced the tensile strength as well as the flexural strength of the composites. Furthermore, mechanistic studies suggested that the barrier effect of MBR, endothermic decomposition of LDHP, and the synergistic effect of LDHP and APES contributed essentially to the smoke suppression and flame-retardant properties of the material. The findings of this research point to a potential method for enhancing the EP’s ability to suppress smoke and flames while enhancing its mechanical properties.

Funder

National Natural Science Foundation of China

Applied Basic Research Programs of the Qinghai Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3