Improvement in Thermal Stability of Flexible Poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) Bioplastic by Blending with Native Cassava Starch

Author:

Srisuwan Yaowalak,Baimark YodthongORCID

Abstract

High-molecular-weight poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) triblock copolymer (PLLA-PEG-PLLA) is a promising candidate for use as a biodegradable bioplastic because of its high flexibility. However, the applications of PLLA-PEG-PLLA have been limited due to its high cost and poor thermal stability compared to PLLA. In this work, native cassava starch was blended to reduce the production cost and to improve the thermal stability of PLLA-PEG-PLLA. The starch interacted with PEG middle blocks to increase the thermal stability of the PLLA-PEG-PLLA matrix and to enhance phase adhesion between the PLLA-PEG-PLLA matrix and dispersed starch particles. Tensile stress and strain at break of PLLA-PEG-PLLA films decreased and the hydrophilicity increased as the starch content increased. However, all the PLLA-PEG-PLLA/starch films remained more flexible than the pure PLLA film, representing a promising candidate in biomedical, packaging and agricultural applications.

Funder

Thailand Science Research and Innovation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3